
Freienbach 8807

- 75 rue de la Morandière, 33185 Le Haillan
- Saint-Michel, 32100 Condom

The number of tubes of the same type in a laboratory depends on several factors:

- tests, insource/outsource proportion);
- of a laboratory on the competitive IVD market (B2C/ B2B ratio, the market position dictates the terms of preanalytics);
- departments and how far these departments are located from each other);
- tube loading principles)
- ➔ working schedule

formulated.

HOW WE ACHIEVED THIS RESULT?

All processes in a laboratory are interrelated; so, changes in one process lead to changes in the others. That's why, before the introduction of the one-tube philosophy, the following steps were first taken:

→ Rewriting of rules for biomaterial collection and logistics;

- → Implementation of the new rules in all sample collection sites to standardize processes across the group of laboratories;
- → Standardization of tubes (use of only 1 reference for serum and 1 for EDTA);
- → Unification of tube barcoding principles ;
- → Unification of all electronic dictionaries and catalogs in the whole group of laboratories;
- → Changes in the sorting logic in the production facilities.

THIS PREPARATORY **PHASE TOOK ABOUT** MONTHS

Also, some potential risks of the transition from the "n" - to the one-tube philosophy were assessed:

- → Risk of increasing number of "not enough" material";
- → Risk of bottleneck at second sorting machine with additional sorting for immunochemical testing;
- → Increased TAT for immunochemical testing;
- Many reconfigurations of existing processes (Collection Points, hospitals, physicians, middleware, LIS, sorters, production flows) are very likely to cause problems.

These and some other risks were calculated,

DESIGN OF THE STUDY

Since many changes occurred in the laboratory from 2016 to 2022 (most processes were reconsidered, a new production was established, many new Collection Points were opened, the pandemic COVID-19 occurred), it was decided, in order to compare "apples with apples", to apply the extrapolation technique and consider the factual results of 2022 as a basis and then extrapolate them to the situation before the change, i.e., to 2016. Cerba Nouvelle Aquitaine started the conversion from the 2-tube to the 1-tube philosophy for serum and EDTA tubes in 2016 with the preparation phase. The transformation process included:

COMBINING **CLINICAL CHEMISTRY, IMMUNOCHEMISTRY**

SEROLOGY TESTS INTO 1 SERUM TUBE INSTEAD OF 2

COMBINING CBC SEDIMENTATION RATE, **AND HBA1C INTO 1 EDTA TUBE INSTEAD OF 2**

So, the tube philosophy of 2016 was retro constructed from the real data of 2022 by multiplying by the coefficient. We just wanted to answer the question, "What would we

SAVINGS CALCULATIONS 1. Yearly cost savings were calculated using the formula: the number x cost per tube + cost of of tubes for 2022 utilization 2. Yearly CO, footprint savings were calculated according to the formula: weight of 1 tube the number amount of CO₂ X generated from 1 kg of tubes of plastic production Mass of 1 tube is 9,2 g (serum),6,6 g (EDTA), and mass of CO₂ generated by 1 kg of plastic was taken as 3,5 kg.

Yearly patient blood savings were calculated as:

volume of X of tubes the tubes

DATA SET DESCRIPTION

Data set for the study was prepared by gathering, cleaning and reworking of the data from different Cerba Nouvelle-Aquitaine data sources:

1. Raw data

→ LIS data (full list of ordered requests for 2022 year) - 1.5 M rows → Middleware data – full list of processed tubes for 2022 year – 6 M rows → Middleware data - full list of processed tests for 2022 year - 240 M rows

2. Configuration data

- ➔ Preanalytic configuration:
- List of tube types with test mapping (2022)
- List of tube types with test mapping (2016-year version)

3. List of analyzers

4. List of tests

5. List of production sites

Final data set was generated in 4 steps:

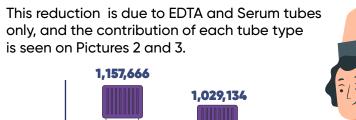
1. Cleaning Raw data:

- → Excluding all service orders, internal QC, service tests → Excluding orders and tests not belonging to Cerba Nouvelle-Aquitaine SCPs
- **2.** Preparation of mapping test by test of current preanalytics version and 2016 year version
- **3.** Combining cleaned data with prepared preanalytics
- 4. Generating new tubes barcodes using old-style preanalytics

Final dataset configuration: 1. Rows – 12.5 M

2. Each raw – one ordered test **3. Data set includes:**

- → Patient order ID Tube ID → Tube barcode (current) → Tube barcode (generated) for 2016 preanalytics rules) ➔ Test code
- ➔ Test name ➔ Production site → Analyzer → Tube type code (current) → Tube type code (2016 preanalytics rules)

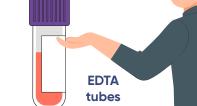

RESULTS AND DISCUSSION CALCULATIONS STUDY

The total number of tubes (Citrate, Fluoride, Heparine, EDTA, Serum) was 2,650,231 in 2022, which is 18% less than it would have been: 3,255,315. So, in absolute numbers the reduction is 593,690 tubes per 2022 year.

SO, IN ABSOLUTE NUMBERS THE ECONOMY IS TUBES PER 2022 YEAR, WHICH IS 18 593,690

Picture 1. Comparison of the total number of tubes in 2022 (2022 real) and 2022 retro constructed (2022*).

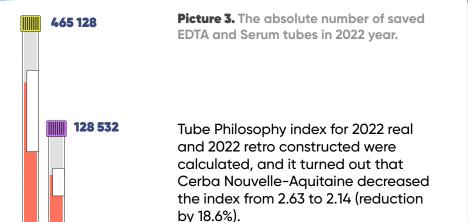
1,652,175


Picture 2. Comparison of the

total number of EDTA (violet)

engineered (left columns).

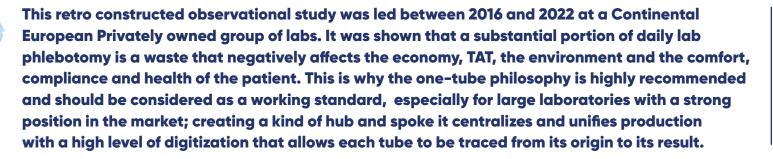
and Serum (yellow) tubes in 2022


(right columns) and 2022 retro

SERUM

TUBES

1,187,017


Impact of performed work is presented in the Table 1.

	EDTA	Serum	Total
Economical	51,824 euro	286,909 euro	338,734 euro
Carbon footprint	2,969	14,978	17 947 kg
Patient blood	514 liters	2,326 liters	2,840 liters

 Table 1. Variety of direct savings from 18,6 % index reduction.

That's just the direct savings. When we calculate the indirect savings, we have to consider the time saved in almost all processes: Phlebotomy, barcode reading, centrifugation, sorting and tube packing into trays, etc. Also, the reduction in volume, which creates more space and drastically reduces the cost of manipulating samples (personnel, equipment, rental).

CONCLUSIONS

*Arrival curve – the curve of arrival of the tubes from collection points to production site by hours **Total Cost of Ownership – the concept of relocating to a produced or manufactured object all the costs generated in the lifecycle of the production and not just the variable direct costs like in CPRR.

